Background: von Willebrand factor (VWF) is a key component for maintenance of normal hemostasis. Its glycan moieties, accounting for about 20% of its molecular weight, have been shown to affect many of its properties. Previous studies reported correlations between VWF secretion, half-life and the nature or presence of its N-glycans, and more importantly between VWF plasma level and the type of N-linked ABH antigens. Despite the presence of 10 predicted O-glycosylation sites, the O-glycome remains poorly characterized, impairing the complete elucidation of its influence on VWF functions. So far only a single glycan structure, a disialyl core 1 glycan, has been identified.
Objectives: To define an exhaustive profile of the VWF O-glycan structures to help the understanding of their role in VWF regulation and properties.
Methods: Plasma-derived VWF O-linked sugars were isolated and analyzed using state-of-the-art mass spectrometry methodologies.
Results and conclusions: We provide here a detailed analysis of the human plasma-derived VWF O-glycome. Eighteen O-glycan structures including both core 1 and core 2 structures are now demonstrated to be present on VWF. Amongst the newly determined structures are unusual tetra-sialylated core 1 O-glycans and ABH antigen-containing core 2 O-glycans. In conjunction with current models explaining VWF activity, knowledge of the complete O-glycome will facilitate research aimed at providing a better understanding of the influence of glycosylation on VWF functions.