Purpose of review: The relationship between increasing maternal age and trisomy has been recognized for over 50 years and is one of the most important etiological factors associated with any human genetic disorder. Specifically, the risk of trisomy in a clinically recognized pregnancy rises from about 2-3% for women in their twenties to an astounding 30% or more for women in their forties. Thus, as women approach the end of their child-bearing years, errors of chromosome segregation represent the most important impediment to a successful pregnancy.
Recent findings: Despite the clinical importance of this relationship, we do not understand how age affects the likelihood of producing a normal egg. Errors that affect chromosome segregation could occur at several stages during the development of the oocyte: in the fetal ovary, either during the mitotic proliferation of oogonia or the early stages of meiosis; in the 'dictyate' oocyte, during the 10-50-year period of meiotic arrest; or during the final stages of oocyte growth and maturation, when meiosis resumes and the meiotic divisions take place. Recent evidence from studies of human oocytes and trisomic conceptions and from studies in model organisms implicates errors at each of these stages.
Summary: It seems likely that there are multiple causes of human age-related nondisjunction, complicating our efforts to understand - and, ultimately, to provide preventive measures for - errors associated with increasing maternal age.