Lucas and colleagues recently proposed a model based on fracture and deformation concepts to describe how mammalian tooth enamel may be adapted to the mechanical demands of diet (Lucas et al.: Bioessays 30 2008 374-385). Here we review the applicability of that model by examining existing data on the food mechanical properties and enamel morphology of great apes (Pan, Pongo, and Gorilla). Particular attention is paid to whether the consumption of fallback foods is likely to play a key role in influencing great ape enamel morphology. Our results suggest that this is indeed the case. We also consider the implications of this conclusion on the evolution of the dentition of extinct hominins.