Stationary points on the C(3)H(7)O potential energy surface relevant to the title reaction are calculated employing RQCISD(T)/cc-pVinfinityZ//B3LYP/6-311++G(d,p) quantum chemical calculations. Rate coefficients at 50-3000 K temperature and from zero to infinite pressure are calculated using an RRKM-based multiwell master equation. Due to the topography of the entrance channel an effective two-transition-state model is used to calculate accurate association rate coefficients. Our calculations are in excellent agreement with the available experimental data. We predict approximately 5% vinyl alcohol branching above 1000 K, the allyl radical formation being the main channel at high temperatures.