With advancements in the operative techniques, patient survival following liver transplantation (LTx) has increased substantially. This has led to the acceleration of pre-existing kidney disease because of immunosuppressive nephrotoxicity making additional kidney transplantation (KTx) inevitable. On the other hand, in a growing number of patients on the waiting list to receive liver, long waiting time has resulted in adverse effect of decompensated liver on the kidney function. During the last two decades, the transplant community has considered combined liver kidney transplantation (CLKTx) to overcome this problem. The aim of our study is to present an overview of our experience as well as a review of the literature in CLKTx and to discuss the controversy in this regard. All performed CLKTx (n = 22) at our institution as well as all available reported case series focusing on CLKTx are extracted. The references of the manuscripts were cross-checked to implement further articles into the review. The analyzed parameters include demographic data, indication for LTx and KTx, duration on the waiting list, Model for End-Stage Liver Disease (MELD) score, Child-Turcotte-Pugh (CTP) score, immunosuppressive regimen, post-transplant complications, graft and patient survival, and cause of death. From 1988 to 2009, a total of 22 CLKTx were performed at our institution. The median age of the patients at the time of CLKTx was 44.8 (range: 4.5-58.3 yr). The indications for LTx were liver cirrhosis, hyperoxaluria type 1, polycystic liver disease, primary or secondary sclerosing cholangitis, malignant hepatic epithelioid hemangioendothelioma, cystinosis, and congenital biliary fibrosis. The KTx indications were end-stage renal disease of various causes, hyperoxaluria type 1, polycystic kidney disease, and cystinosis. The mean follow-up duration for CLKTx patients were 4.6 +/- 3.5 yr (range: 0.5-12 yr). Overall, the most important encountered complications were sepsis (n = 8), liver failure leading to retransplantation (n = 4), liver rejection (n = 3), and kidney rejection (n = 1). The overall patient survival rate was 80%. Review of the literature showed that from 1984 to 2008, 3536 CLKTx cases were reported. The main indications for CLKTx were oxalosis of both organs, liver cirrhosis and chronic renal failure, polycystic liver and kidney disease, and liver cirrhosis along with hepatorenal syndrome (HRS). The most common encountered complications following CLKTx were infection, bleeding, biliary complications, retransplantation of the liver, acute hepatic artery thrombosis, and retransplantation of the kidney. From the available data regarding the need for post-operative dialysis (n = 673), a total of 175 recipients (26%) required hemodialysis. During the follow-up period, 154 episodes of liver rejection (4.3%) and 113 episodes of kidney rejection (3.2%) occurred. The cumulative 1, 2, 3, and 5 yr survival of both organs were 78.2%, 74.4%, 62.4%, and 60.9%, respectively. Additionally, the cumulative 1, 2, 3, and 5 yr patient survival were 84.9%, 52.8%, 45.4%, and 42.6%, respectively. The total number of reported deaths was 181 of 2808 cases (6.4%), from them the cause of death in 99 (55%) cases was sepsis. It can be concluded that there is still no definitive evidence of better graft and patient survival in CLKTx recipients when compared with LTx alone because of the complexity of the exact definition of irreversible kidney function in LTx candidates. Additionally, CLKTx is better to be performed earlier than isolated LTx and KTx leading to the avoidance of deterioration of clinical status, high rate of graft loss, and mortality. Shorter graft ischemia time and more effective immunosuppressive regimens can reduce the incidence of graft malfunctioning in CLKTx patients. Providing a model to reliably determine the need for CLKTx seems necessary. Such a model can be shaped based upon new and precise markers of renal function, and modification of MELD system.