Virulence of nosocomial pathogen Staphylococcus epidermidis is essentially related to formation of adherent biofilms, assembled by bacterial attachment to an artificial surface and subsequent production of a matrix that mediates interbacterial adhesion. Growing evidence supports the idea that proteins are functionally involved in S. epidermidis biofilm accumulation. We found that in S. epidermidis 1585v overexpression of a 460 kDa truncated isoform of the extracellular matrix-binding protein (Embp) is necessary for biofilm formation. Embp is a giant fibronectin-binding protein harbouring 59 Found In Various Architectures (FIVAR) and 38 protein G-related albumin-binding (GA) domains. Studies using defined Embp-positive and -negative S. epidermidis strains proved that Embp is sufficient and necessary for biofilm formation. Further data showed that the FIVAR domains of Embp mediate binding of S. epidermidis to solid-phase attached fibronectin, constituting the first step of biofilm formation on conditioned surfaces. The binding site in fibronectin was assigned to the fibronectin domain type III12. Embp-mediated biofilm formation also protected S. epidermidis from phagocytosis by macrophages. Thus, Embp is a multifunctional cell surface protein that mediates attachment to host extracellular matrix, biofilm accumulation and escape from phagocytosis, and therefore is well suited for promoting implant-associated infections.