Lipid homeostasis, lipotoxicity and the metabolic syndrome

Biochim Biophys Acta. 2010 Mar;1801(3):209-14. doi: 10.1016/j.bbalip.2009.10.006. Epub 2009 Nov 27.

Abstract

In the 20th century industrialized nations have become afflicted with an unprecedented pandemic of increased adiposity. In the United States, the epicenter of the epidemic, over 2/3 of the population, is overweight and 1 of every 6 Americans carries the diagnosis of metabolic syndrome. Although genes determine susceptibility to environmental factors, the epidemic is clearly due to increased consumption of calorie-dense, highly lipogenic foods, coupled with a marked decrease in physical exertion resulting from modern technologies. If this lifestyle continues, morbid consequences are virtually inevitable. They include type II diabetes and a cluster of disorders known as "the metabolic syndrome" usually appearing in middle age. The morbid consequences of the chronic caloric surplus are buffered before middle age by the partitioning of these calories as fat in the adipocyte compartment which is specifically designed to store triglycerides. Leptin has been proposed as the major hormonal regulator of the partitioning of surplus calories. However, multiple factors can determine the storage capacity of the fat tissue and when it is exceeded ectopic lipid deposition begins. The organs affected in metabolic syndrome include skeletal muscle, liver, heart and pancreas, which are now known to contain abnormal levels of triglycerides. While neutral fat is probably harmless, it is an index of ectopic lipid overload. Fatty acid derivatives can interfere with the function of the cell and ultimately lead to its demise through lipoapoptosis, the consequences of which are gradual organ failure.

Publication types

  • Review

MeSH terms

  • Animals
  • Homeostasis
  • Humans
  • Leptin / metabolism
  • Lipid Metabolism*
  • Metabolic Syndrome / metabolism*
  • Metabolic Syndrome / pathology
  • Obesity / metabolism
  • Obesity / pathology

Substances

  • Leptin