The molecular definition of major histocompatibility complex (MHC) class I-presented CD8(+) T-cell epitopes from clinically relevant Mycobacterium tuberculosis (Mtb) target proteins will aid in the rational design of T-cell-based diagnostics of tuberculosis (TB) and the measurement of TB vaccine-take. We used an epitope discovery system, based on recombinant MHC class I molecules that cover the most frequent Caucasian alleles [human leucocyte antigen (HLA)-A*0101, A*0201, A*0301, A*1101, A*2402, B*0702, B*0801 and B*1501], to identify MHC class I-binding peptides from overlapping 9-mer peptides representing the Mtb protein TB10.4. A total of 33 MHC class I-binding epitopes were identified, spread across the entire amino acid sequence, with some clustering at the N- and C-termini of the protein. Binding of individual peptides or closely related peptide species to different MHC class I alleles was frequently observed. For instance, the common motif of xIMYNYPAMx bound to six of eight alleles. Affinity (50% effective dose) and off-rate (half life) analysis of candidate Mtb peptides will help to define the conditions for CD8(+) T-cell interaction with their nominal MHC class I-peptide ligands. Subsequent construction of tetramers allowed us to confirm the recognition of some of the epitopes by CD8(+) T cells from patients with active pulmonary TB. HLA-B alleles served as the dominant MHC class I restricting molecules for anti-Mtb TB10.4-specific CD8(+) T-cell responses measured in CD8(+) T cells from patients with pulmonary TB.