Locating the source of an advected chemical signal is a common challenge facing many living organisms. When the advecting medium is characterized by either high Reynolds number or high Peclet number, the task becomes highly nontrivial due to the generation of heterogeneous, dynamically changing filamental concentrations that do not decrease monotonically with distance to the source. Defining search strategies that are effective in these environments has important implications for the understanding of animal behavior and for the design of biologically inspired technology. Here we present a strategy that is able to solve this task without the higher intelligence required to assess spatial gradient direction, measure the diffusive properties of the flow field, or perform complex calculations. Instead, our method is based on the collective behavior of autonomous individuals following simple social interaction rules which are modified according to the local conditions they are experiencing. Through these context-dependent interactions, the group is able to locate the source of a chemical signal and in doing so displays an awareness of the environment not present at the individual level. This behavior illustrates an alternative pathway to the evolution of higher cognitive capacity via the emergent, group-level intelligence that can result from local interactions.