A novel sodium-calcium ion channel modulator, RS-87476, reduced cerebral infarct size in cats subjected to permanent unilateral occlusion of the middle cerebral artery. Cerebral injury was assessed in vivo with a combination of magnetic resonance (MR) imaging and spectroscopy for 5-12 hours after occlusion and was compared with the area of histochemically ischemic brain tissue. Compared with infarcts in placebo-treated animals, infarcts in cats given RS-87476 were reduced by an average of 70% at the lowest dose, 75% at the intermediate dose, and 88% at the highest dose. Tissue edema, observed as areas of signal hyperintensity on diffusion- and T2-weighted spin-echo images, was confined to small regions of the parietal cortex and basal ganglia in drug-treated animals. Mean plasma levels of RS-87476 at the lowest dose were 13 ng/mL initially, falling to maintenance levels of 3-5 ng/mL; at the intermediate and highest doses, plasma levels of drug were approximately five- and 20-fold greater. The drug was only slightly hypotensive. At least part of the potent cerebroprotective effects of RS-87476 result from its ability to stabilize metabolic energy reserves, reduce lactate formation in ischemic tissues, and attenuate intracerebral edema.