Altered intracellular calcium (Ca(i)(2+)) handling by cardiomyocytes has been implicated in drug-induced cardiomyopathy and arrhythmogenesis. To explore whether such alterations predict cardiotoxicity, Ca(i)(2+) imaging was conducted in cultured, spontaneously contracting Guinea pig cardiomyocytes to characterize the effects of 13 cardiotoxicants and 2 safe drugs. All cardiotoxicants perturbed Ca(i)(2+) at therapeutically relevant concentrations. The cytotoxic chemotherapeutics doxorubicin and epirubicin, known to cause cardiomyopathy, preferentially reduced Ca(i)(2+) transient amplitude and sarcoplasmic reticulum (SR) Ca(2+) content, whereas Torsade de Pointes (TdP) inducers and potent hERG channel blockers (amiodarone, cisapride, dofetilide, E-4031 and terfenadine) predominately suppressed diastolic Ca(i)(2+) and contraction rate, and prolonged Ca(i)(2+) transient duration. The molecularly targeted cancer therapeutics, sunitinib and imatinib, exhibited profound effects on Ca(i)(2+), combining effects of cytotoxic chemotherapeutics, TdP inducers and potent hERG channel blockers. TdP inducers lacking direct hERG inhibition, ouabain and pentamidine, significantly elevated Ca(i)(2+) transient amplitude and SR Ca(2+) content while aconitine primarily accelerated automaticity and elevated diastolic Ca(i)(2+) similar to ouabain. Finally, amoxicillin and aspirin did not exert any significant effects on Ca(i)(2+) at concentrations up to 100 microM. These results suggest that detecting altered Ca(i)(2+) handling in cultured cardiomyocytes may be used as an in vitro model for early cardiac drug safety assessment.
Copyright (c) 2010 Elsevier Ltd. All rights reserved.