Estimating the radiation dose received by the fetus from nuclear medicine procedures is important because of the greater sensitivity of rapidly developing fetal tissues to ionizing radiation. (18)F-fluoro-L-thymidine (FLT) uptake is related to cellular proliferation and is currently used to monitor tumor progression and response to therapy. This study was undertaken to estimate-on the basis of biodistribution data obtained by PET/CT in pregnant rhesus monkeys-radiation absorbed dose to a human fetus administered (18)F-FLT.
Methods: Three pregnant rhesus macaques (gestational age, 113 +/- 8 d) were administered (18)F-FLT and imaged for 2 h on a PET/CT scanner. Time-activity curves for maternal and fetal organs were generated in anatomic regions of interest identified via CT. Doses were estimated using OLINDA/EXM and the 6-mo-pregnant human model.
Results: The extrapolated whole-body maternal dose obtained, 11.4 microGy/MBq, is similar to the previously reported adult female dose of 15.6 microGy/MBq. The estimated total-body dose to a human fetus is 24 microGy/MBq. Significant long-term (18)F-FLT accumulation in fetal liver resulted in a fetal liver dose of 53 microGy/MBq.
Conclusion: The fetal dose estimate in a 6-mo-pregnant human using (18)F-FLT is slightly greater than that reported for (18)F-FDG. (18)F-FLT trapping in the fetal liver should be considered in the risk-benefit analysis of (18)F-FLT PET examination in pregnant patients.