Treatment with fixed orthodontic appliances can cause enamel demineralization by increased biofilm adhesion. The purpose of the present study was to investigate whether a polytetrafluoroethylene (PTFE) coating reduces biofilm formation on orthodontic brackets. One PTFE-coated bracket and one uncoated stainless steel bracket were bonded symmetrically on the first or second (four maxillary and nine mandibular) primary molars in 13 adolescent patients (five females and eight males, aged 11.2 +/- 2.8 years; four dropouts) for 8 weeks. Quantitative biofilm formation on brackets was analysed with the Rutherford backscattering detection (RBSD) method, a scanning electron microscopy technique. A total of five RBSD micrographs were obtained per bracket with views from the buccal, mesial, distal, cervical, and occlusal aspects. A two-sided paired t-test was used to compare data. A P-value less than 0.05 was considered significant. Total biofilm formation was 4.0 +/- 3.6 per cent of the surface on the PTFE-coated brackets and 22.2 +/- 5.4 per cent on uncoated brackets. Differences between the two groups were statistically significant (P < 0.05). Pairwise comparison of biofilm formation with respect to location (buccal, mesial, distal, cervical, and occlusal) revealed a significantly lower biofilm accumulation on PTFE-coated brackets on all surfaces. The results indicate that PTFE coating of brackets reduces biofilm adhesion to a minimum and might have the potential to reduce iatrogenic side effects, e.g. decalcification during orthodontic treatment with fixed appliances.