A decellularization method using high-hydrostatic pressure (HHP) technology (>600MPa) is described. The HHP disrupts the cells inside the tissue. The cell debris can be eliminated with a simple washing process, producing clean, decellularized tissue. In this study, porcine aortic blood vessel was decellularized by HHP. The mechanical properties and in vivo performance of the decellularized tissue were evaluated. Mechanical properties of the decellularized tissue were not altered by the HHP treatment. Reduced inflammation of the decellularized tissue was confirmed by xenogenic transplant experimentation. An allogenic transplantation study showed that decellularized blood vessel endured the arterial blood pressure, and there was no clot formation on the luminal surface. In addition, cellular infiltration into the vessel wall was observed 4 weeks after implantation, suggesting that HHP treatments could be applied widely as a high-quality decellularization method.
Copyright 2010 Elsevier Ltd. All rights reserved.