The aim of this study was to determine the current intensities necessary to elicit three levels of varying EEG and behavioural phenomena with electrical stimulation, and also to determine the consistency of the EEG and behavioural components of the triggered seizures over time. Electrical stimulation of the primary motor/somatosensory cortex was performed in 16 adult rats with multichannel microwire electrode arrays. Stimulation was delivered at a frequency of 60 Hz (1 ms pulse width), for 2 s duration, as biphasic rectangular pulses over four of the eight available electrode pairs. Current intensity thresholds for interruption of normal behaviour, epileptiform afterdischarge (EAD) longer than 5 s and motor seizures with Racine severity greater than 3 were not correlated to time post-surgery. The Racine threshold was shown to be negatively correlated to the EAD duration and Racine severity of seizures elicited in the following sessions. Seizures were reliably generated in rats through cortical stimulation with microwire electrode arrays and these seizures were not shown to be subject to any kindling type effects up to 53 days post-implantation. Both the electrographic duration and behavioural severity of stimulated seizures remained, on average, constant during this experimental period. Approximately one-third of stimulations did not cause observable motor seizures and of those that did result in seizures, forelimb clonus was the most common manifestation and the mean EAD duration was 18.5 s. No damage beyond that caused by surgical implantation of electrodes was observed in the histological analyses of stimulated and non-stimulated tissue. The consistency, duration and severity of seizures within this timeframe make this cortical stimulation model suitable for investigations into novel therapeutic interventions for epilepsy that require a known seizure focus.
Copyright 2010 Elsevier B.V. All rights reserved.