A great variety of provocations of the airway mucosa produce extravasation of plasma from the abundant subepithelial microvessels. A plasma exudate has important actions through its volume, its specific and unspecific binding proteins, its enzyme systems, and its potent peptides (of kinin, complement, coagulation, fibrinolysis and other systems). If allowed to operate on the surface of an intact mucosa the plasma exudate would have important roles in normal airway defence. Recent observations in guinea-pig tracheobronchial airways and in human nasal airways suggest that the mucosal exudation of plasma into the airway lumen is a non-injurious fully reversible process. Threshold exudative responses thus resulted in the appearance of an 'unfiltered' plasma exudate not only in the lamina propria but also on the surface of an undisrupted mucosa. Even after extensive luminal entry of exudate the epithelial lining was intact, as judged by light, fluorescence and electron microscopy. Hence, the epithelial barrier was reversibly permeable when approached from beneath by the plasma exudate. This was a distinct increase in outward permeability, because even during the exudation of plasma the mucosa remained a barrier to luminal solutes. It is possible that the exudate itself, by a slight compressive action on the basolateral aspect of epithelial cells, creates intercellular pathways for its entry into the lumen. Contrary to current beliefs, we propose that plasma exudation should be considered a first line respiratory defence mechanism operating together with other systems of the mucosal surface.