Studies of post-translational modification by beta-N-acetyl-D-glucosamine (O-GlcNAc) are hampered by a lack of efficient tools such as O-GlcNAc-specific antibodies that can be used for detection, isolation and site localization. We have obtained a large panel of O-GlcNAc-specific IgG monoclonal antibodies having a broad spectrum of binding partners by combining three-component immunogen methodology with hybridoma technology. Immunoprecipitation followed by large-scale shotgun proteomics led to the identification of more than 200 mammalian O-GlcNAc-modified proteins, including a large number of new glycoproteins. A substantial number of the glycoproteins were enriched by only one of the antibodies. This observation, combined with the results of inhibition ELISAs, suggests that the antibodies, in addition to their O-GlcNAc dependence, also appear to have different but overlapping local peptide determinants. The monoclonal antibodies made it possible to delineate differentially modified proteins of liver in response to trauma-hemorrhage and resuscitation in a rat model.