Myosin X is an unconventional myosin with puzzling motility properties. We studied the motility of dimerized myosin X using the single-molecule fluorescence techniques polTIRF, FIONA and Parallax to measure the rotation angles and three-dimensional position of the molecule during its walk. It was found that Myosin X steps processively in a hand-over-hand manner following a left-handed helical path along both single actin filaments and bundles. Its step size and velocity are smaller on actin bundles than individual filaments, suggesting myosin X often steps onto neighboring filaments in a bundle. The data suggest that a previously postulated single alpha-helical domain mechanically extends the lever arm, which has three IQ motifs, and either the neck-tail hinge or the tail is flexible. These structural features, in conjunction with the membrane- and microtubule-binding domains, enable myosin X to perform multiple functions on varied actin structures in cells.