Polymerase chain reaction products generated from a single Alu primer and human genomic DNA produce a distinct and highly reproducible R-banding pattern when hybridized to metaphase chromosome spreads. Individual chromosomes can be readily identified and karyotyped. Compared to conventional fluorescence banding on heat-denatured chromosomes, the in situ hybridization banding (ISHB) shows high contrast and definition. We demonstrate that this banding method can be employed effectively in double-labeling experiments for the rapid and simultaneous assignment of probes to specific chromosomal bands. Since virtually any fluorochrome can be used to delineate chromosomal bands, ISHB should provide added flexibility for multicolor mapping strategies.