Metastases arise from disseminated tumor cells (DTC) that colonize secondary organs. However, DTC survival strategies to start metastatic outgrowth are unclear. The hostile (hypoxic, hypoglycemic) microenvironmental conditions of the bone marrow serve as an ideal model environment for investigation of DTC survival strategies under environmental stress. We investigated the breast cancer DTC cell line BC-M1 established from the bone marrow of a cancer patient by 2-D DIGE and MS analysis. We observed specific overexpression of the unfolded protein response (UPR) proteins Grp78, Grp94, and protein disulfide-isomerase in breast, lung, and prostate cancer DTC cell lines from the bone marrow. The UPR contributes to survival under adverse environmental conditions including chemotherapy. We show in cellular models that Grp78 expression of the UPR is regulated by tyrosine 1248 of ErbB-2. The breast cancer DTC cell lines shared stem/progenitor cell cancer phenotypes (CD44(high)/CD24(low)). Immunocytochemical staining of bone marrow samples from breast cancer patients confirmed in situ high expression of Grp78 and Grp94 in DTC of breast cancer patients, indicating the potential of both proteins as novel markers for DTC detection. Our results suggest the presence of a previously not recognized stress resistant DTC population that combines stem/progenitor attributes with an UPR phenotype.