Enhanced fluorescence imaging of live cells by effective cytosolic delivery of probes

PLoS One. 2010 May 3;5(5):e10459. doi: 10.1371/journal.pone.0010459.

Abstract

Background: Microscopic techniques enable real-space imaging of complex biological events and processes. They have become an essential tool to confirm and complement hypotheses made by biomedical scientists and also allow the re-examination of existing models, hence influencing future investigations. Particularly imaging live cells is crucial for an improved understanding of dynamic biological processes, however hitherto live cell imaging has been limited by the necessity to introduce probes within a cell without altering its physiological and structural integrity. We demonstrate herein that this hurdle can be overcome by effective cytosolic delivery.

Principal findings: We show the delivery within several types of mammalian cells using nanometre-sized biomimetic polymer vesicles (a.k.a. polymersomes) that offer both highly efficient cellular uptake and endolysomal escape capability without any effect on the cellular metabolic activity. Such biocompatible polymersomes can encapsulate various types of probes including cell membrane probes and nucleic acid probes as well as labelled nucleic acids, antibodies and quantum dots.

Significance: We show the delivery of sufficient quantities of probes to the cytosol, allowing sustained functional imaging of live cells over time periods of days to weeks. Finally the combination of such effective staining with three-dimensional imaging by confocal laser scanning microscopy allows cell imaging in complex three-dimensional environments under both mono-culture and co-culture conditions. Thus cell migration and proliferation can be studied in models that are much closer to the in vivo situation.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Cell Death / drug effects
  • Cell Survival / drug effects
  • Cells, Cultured
  • Cytosol / drug effects
  • Cytosol / metabolism*
  • Fibrin / pharmacology
  • Fibroblasts / cytology*
  • Fibroblasts / drug effects
  • Fibroblasts / metabolism
  • Fluorescence
  • Humans
  • Intracellular Space / drug effects
  • Intracellular Space / metabolism
  • Models, Biological
  • Molecular Imaging / methods*
  • Molecular Probes / chemistry
  • Molecular Probes / metabolism*
  • Polymers / metabolism
  • Rhodamines / metabolism
  • Staining and Labeling

Substances

  • Molecular Probes
  • Polymers
  • Rhodamines
  • Fibrin