Background: Lemay et al recently reported that the RNA binding protein HuR directly interacts with the ribonuclease H (RNase H) domain of HIV-1 reverse transcriptase (RT) and influences the efficiency of viral reverse transcription (Lemay et al., 2008, Retrovirology 5:47). HuR is a member of the embryonic lethal abnormal vision protein family and contains 3 RNA recognition motifs (RRMs) that bind AU-rich elements (AREs). To define the structural determinants of the HuR-RT interaction and to elucidate the mechanism(s) by which HuR influences HIV-1 reverse transcription activity in vitro, we cloned and purified full-length HuR as well as three additional protein constructs that contained the N-terminal and internal RRMs, the internal and C-terminal RRMs, or the C-terminal RRM only.
Results: All four HuR proteins were purified and characterized by biophysical methods. They are well structured and exist as monomers in solution. No direct protein-protein interaction between HuR and HIV-1 RT was detected using NMR titrations with 15N labeled HuR variants or the 15N labeled RNase H domain of HIV-1 RT. Furthermore, HuR did not significantly affect the kinetics of HIV-1 reverse transcription in vitro, even on RNA templates that contain AREs.
Conclusions: Our results suggest that HuR does not impact HIV-1 replication through a direct protein-protein interaction with the viral RT.