TLR3 recognizes dsRNAs and is considered of key importance to antiviral host-defense responses. TLR3 also triggers neuroprotective responses in astrocytes and controls the growth of axons and neuronal progenitor cells, suggesting additional roles for TLR3-mediated signaling in the CNS. This prompted us to search for alternative, CNS-borne protein agonists for TLR3. A genome-scale functional screening of a transcript library from brain tumors revealed that the microtubule regulator stathmin is an activator of TLR3-dependent signaling in astrocytes, inducing the same set of neuroprotective factors as the known TLR3 agonist polyinosinic:polycytidylic acid. This activity of stathmin crucially depends on a long, negatively charged alpha helix in the protein. Colocalization of stathmin with TLR3 on astrocytes, microglia, and neurons in multiple sclerosis-affected human brain indicates that as an endogenous TLR3 agonist, stathmin may fulfill previously unsuspected regulatory roles during inflammation and repair in the adult CNS.