A novel method to fabricate highly interconnected porous hyaluronic acid (HA) scaffolds with open surface pore structures was developed by using embossed ice particulates as a template. HA sponges were cross-linked by water-soluble carbodiimide (WSC) and the optimal cross-linking condition was analyzed by infrared spectroscopy. Cross-linking with 50 mM WSC in a 90% (v/v) ethanol/water solvent mixture assured the highest degree of cross-linking and most stable structure and, therefore, was used to cross-link the HA sponges. Observation with a scanning electron microscope showed that the HA scaffolds had funnel-like porous structures. There were large, open pores on the top surfaces and inner bulk pores under the top surface of the funnel-like HA sponges. The inner bulk pores were interconnected with the large, top surface pores and extended into the whole sponge. The pore morphology and density of the large, top surface pores were dependent on the dimension and density of the ice particulates. The size of the inner bulk pores was dependent on the freezing temperature. The funnel-like pore structures of the HA sponges facilitated cell penetration into the inner pores of the sponges and resulted in homogenous cell distribution in the sponges.
Keywords: HYALURONIC ACID; ICE PARTICULATE TEMPLATE; OPEN POROUS STRUCTURE; SCAFFOLD; TISSUE ENGINEERING.