Noxa mediates hepatic stellate cell apoptosis by proteasome inhibition

Hepatol Res. 2010 Jul 1;40(7):701-10. doi: 10.1111/j.1872-034X.2010.00668.x. Epub 2010 Jun 14.

Abstract

Aim: Induction of hepatic stellate cell (HSC) apoptosis is a viable therapeutic strategy to reduce liver fibrogenesis. Although BH3-only proteins of the Bcl-2 family trigger pro-apoptotic pathways, the BH3-only proteins mediating HSC apoptosis have not been well defined. Our aim, using proteasome inhibition as a model to induce HSC apoptosis, was to examine the BH3-only proteins contributing to cell death of this key liver cell subtype.

Methods: Apoptosis was induced by treating LX-2 cells, an immortalized human hepatic stellate cell line, and primary rat stellate cells with the proteasome inhibitor MG-132.

Results: Treatment with proteasome inhibitors increased expression of Noxa both at the mRNA (16-fold) and protein (22-fold) levels indicating that both transcriptional and post-translational mechanisms contributed to the increase in cellular Noxa levels. Knockdown of Noxa by siRNA significantly attenuated cell death, mechanistically implicating Noxa as a key apoptotic mediator of proteasome inhibitor-induced cell death. Given the pivotal role for the anti-apoptotic Bcl-2 protein A1 in activated HSC survival, we determined if Noxa bound to this survival protein. Noxa was shown to physically bind the anti-apoptotic Bcl-2 protein A1 by co-immunoprecipitation.

Conclusions: Noxa contributes to proteasome inhibitor-induced apoptosis of stellate cells likely by binding A1. Strategies to therapeutically increase Noxa expression may be useful for inducing HSC apoptosis.