Ambroxol interferes with Pseudomonas aeruginosa quorum sensing

Int J Antimicrob Agents. 2010 Sep;36(3):211-5. doi: 10.1016/j.ijantimicag.2010.05.007. Epub 2010 Jun 26.

Abstract

The mucolytic agent ambroxol has been reported to interfere with the formation of Pseudomonas aeruginosa-derived biofilms in addition to reducing alginate production by undefined mechanisms. Since quorum sensing is a key regulator of virulence and biofilm formation, we examined the effects of ambroxol on P. aeruginosa PAO1 wild-type bacterial clearance rates, adhesion profiles and biofilm formation compared with the quorum sensing-deficient, double-mutant strains DeltalasR DeltarhlR and DeltalasI DeltarhlI. Data presented in this report demonstrated that ambroxol treatment reduced survival rates of the double-mutant strains compared with the wild-type strain in a dose-dependent manner even though the double-mutants had increased adhesion in the presence of ambroxol compared with the wild-type strain. The PAO1 wild-type strain produced a significantly thicker biofilm (21.64+/-0.57 microm) compared with the biofilms produced by the DeltalasR DeltarhlR (7.36+/-0.2 microm) and DeltalasI DeltarhlI (6.62+/-0.31 microm) isolates. Ambroxol treatment reduced biofilm thickness, increased areal porosity, and decreased the average diffusion distance and textual entropy of wild-type and double-mutant strains. However, compared with the double-mutant strains, the changes observed for the wild-type strain were more clearly defined. Finally, ambroxol exhibited significant antagonistic quorum-sensing properties, suggesting that it could be adapted for use clinically in the treatment of cystic fibrosis and to reduce biofilm formation and in the colonisation of indwelling devices.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Ambroxol / pharmacology*
  • Anti-Bacterial Agents / pharmacology*
  • Bacterial Adhesion
  • Humans
  • Microbial Viability / drug effects
  • Pseudomonas aeruginosa / drug effects*
  • Pseudomonas aeruginosa / growth & development
  • Pseudomonas aeruginosa / pathogenicity
  • Quorum Sensing / drug effects*

Substances

  • Anti-Bacterial Agents
  • Ambroxol