Outbreaks of highly pathogenic H5N1 influenza A virus represent a major public health problem because of the possibility of direct transmission of these viruses from avian species to humans. For influenza H5N1 hemagglutinin, a switch from SA-a-2, 3-Gal to SA-a-2, 6-Gal receptor specificity is a critical step that could lead to inter-human transmission. The monitoring of the receptor-binding preference of H5N1 viruses represents an instrument to detect a potential pandemic virus. The aim of this study was to develop a method based on the fluorescence resonance energy transfer (FRET) technology and melting peaks analysis for rapid screening of pandemic H5N1 influenza A virus. Three selected probes corresponding to a 23bp nucleotide sequence of the avian receptor-binding site were used in a real-time RT-PCR to detect nucleotide variations. Five strains of avian influenza A viruses isolated from avian species and two synthesized HA gene were tested. The results showed that the melting peaks analysis is a reliable screening method for detecting the variability of the H5N1 receptor-binding site.
Copyright (c) 2010 Elsevier Ltd. All rights reserved.