Tfb5 interacts with the Tfb2 subunit of the general transcription factor TFIIH to ensure efficient nucleotide-excision repair in eukaryotes. The crystal structure of the complex between Tfb5 and the C-terminal region of Tfb2 (Tfb2C) from Saccharomyces cerevisiae has recently been reported. Here, the structure-determination process is described as a case study. Although crystals were obtained readily, it was not possible to determine experimental phases from a first crystal form (Tfb2(412-513)-Tfb5(2-72)) that diffracted to 2.6 A resolution. Shortening of the Tfb2C from its N-terminus was decisive and modified the crystal packing, leading to a second crystal form (Tfb2(435-513)-Tfb5(2-72)). These crystals diffracted to 1.7 A resolution with excellent mosaicity and allowed structure determination by conventional approaches using heavy atoms. The refined structure from the second crystal form was used to solve the structure of the first crystal form by molecular replacement. Comparison of the two structures revealed that the N-terminal region of Tfb2C and (to a lesser extent) the C-terminal region of Tfb5 contributed to the crystal packing. A detailed analysis illustrates how variation in domain boundaries influences crystal packing and quality.