Intracellular Ca(2+) signaling, and related mechanisms involving inositol 1,4,5-trisphosphate (IP(3)), nitric oxide, and the excitatory neurotransmitter glutamate, play a major role in the regulation of cellular function in the brain. Due to the complex morphology of central neurons, the correct spatiotemporal distribution of signaling molecules is essential. Thus, imaging studies have been particularly useful in elucidating the functions of these signaling molecules. The advancement of imaging methods, together with the development of a new method for the specific inhibition of intracellular IP(3) signaling, have made it possible to identify pathways that are regulated by Ca(2+) signals in the brain, including Ca(2+)-dependent synaptic maintenance and glial cell-dependent neurite growth. Further investigation of Ca(2+)-related signaling is expected to increase our understanding of brain function in the future.