Automatic liver segmentation using a statistical shape model with optimal surface detection

IEEE Trans Biomed Eng. 2010 Oct;57(10):2622-6. doi: 10.1109/TBME.2010.2056369. Epub 2010 Jul 8.

Abstract

In this letter, we present an approach for automatic liver segmentation from computed tomography (CT) scans that is based on a statistical shape model (SSM) integrated with an optimal-surface-detection strategy. The proposed method is a hybrid method that combines three steps. First, we use localization of the average liver shape model in a test CT volume via 3-D generalized Hough transform. Second, we use subspace initialization of the SSM through intensity and gradient profile. Third, we deform the shape model to adapt to liver contour through an optimal-surface-detection approach based on graph theory. The proposed method is evaluated on MICCAI 2007 liver-segmentation challenge datasets. The experiment results demonstrate availability of the proposed method.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Algorithms
  • Databases, Factual
  • Humans
  • Image Processing, Computer-Assisted / methods*
  • Liver / anatomy & histology*
  • Pattern Recognition, Automated / methods*
  • Principal Component Analysis
  • Tomography, X-Ray Computed / methods*