Charge-transfer-plate spatial light modulators (CTPSLM's) are a class of devices that employ chargetransfer plates as the interface between the charge-generation element and the light-modulation element. Both optically addressed and electrically addressed devices have been built. Chargegenerating elements for the optically addressed devices include photoconductors, photodiode and phototransistor arrays, optoelectronic integrated circuit chips, and photocathode-microchannel-plate assemblies. For electrically addressed devices, electron guns, very large-scale integrated circuits, thin-film transistors, and matrix electrodes are among the possible charge-generation elements. Lightmodulation elements used in CTPSLM's include liquid crystals, electro-optic organic and inorganic crystals, polymers, deformable membrane mirrors, oil films, multilayer dielectric films, and electroluminescent films. In principle, all combinations of charge-generation elements and light-modulating elements are possible. This paper explores the fundamental performance limitations of CTP technology, and describes the design, operation, and applications of five different CTPSLM's (three based on membrane-mirror technology and two on liquid-crystal technology).