Cancer and dendritic cells recognize and migrate toward chemokines secreted from lymphatics and use this mechanism to invade the lymphatic system, and cancer cells metastasize through it. The lymphatic-secreted chemokine ligand CCL21 has been identified as a key regulatory molecule in the switch to a metastatic phenotype in melanoma and breast cancer cells. However, it is not known whether CCL21 inhibition is a potential therapeutic strategy for inhibition of metastasis. Here, we describe an engineered CCL21-soluble inhibitor, Chemotrap-1, which inhibits migration of metastatic melanoma cells in vivo. Two-hybrid, pull-down, and coimmunoprecipitation assays allowed us to identify a naturally occurring human zinc finger protein with CCL21 chemokine-binding properties. Further analyses revealed a short peptide (∼70 amino acids), with a predicted coiled-coil structure, which is sufficient for association with CCL21. This CCL21 chemokine-binding peptide was then fused to the Fc region of human IgG1 to generate Chemotrap-1, a human chemokine-binding Fc fusion protein. Surface plasmon resonance and chemotaxis assays showed that Chemotrap-1 binds CCL21 and inhibits CCL21-induced migration of melanoma cells in vitro with subnanomolar affinity. In addition, Chemotrap-1 blocked migration of melanoma cells toward lymphatic endothelial cells in vitro and in vivo. Finally, Chemotrap-1 strongly reduced lymphatic invasion, tracking, and metastasis of CCR7-expressing melanoma cells in vivo. Together, these results show that CCL21 chemokine inhibition by Chemotrap-1 is a potential therapeutic strategy for metastasis and provide further support for the hypothesis that lymphatic-mediated metastasis is a chemokine-dependent process.