Transgene expression and effective gene silencing in vagal afferent neurons in vivo using recombinant adeno-associated virus vectors

J Physiol. 2010 Nov 1;588(Pt 21):4303-15. doi: 10.1113/jphysiol.2010.192971. Epub 2010 Aug 24.

Abstract

Vagal afferent fibres innervating thoracic structures such as the respiratory tract and oesophagus are diverse, comprising several subtypes of functionally distinct C-fibres and A-fibres. Both morphological and functional studies of these nerve subtypes would be advanced by selective, effective and long-term transduction of vagal afferent neurons with viral vectors. Here we addressed the hypothesis that vagal sensory neurons can be transduced with adeno-associated virus (AAV) vectors in vivo, in a manner that would be useful for morphological assessment of nerve terminals, using enhanced green fluorescent protein (eGFP), as well as for the selective knock-down of specific genes of interest in a tissue-selective manner. We found that a direct microinjection of AAV vectors into the vagal nodose ganglia in vivo leads to selective, effective and long-lasting transduction of the vast majority of primary sensory vagal neurons without transduction of parasympathetic efferent neurons. The transduction of vagal neurons by pseudoserotype AAV2/8 vectors in vivo is sufficiently efficient such that it can be used to functionally silence TRPV1 gene expression using short hairpin RNA (shRNA). The eGFP encoded by AAV vectors is robustly transported to both the central and peripheral terminals of transduced vagal afferent neurons allowing for bright imaging of the nerve endings in living tissues and suitable for structure-function studies of vagal afferent nerve endings. Finally, the AAV2/8 vectors are efficiently taken up by the vagal nerve terminals in the visceral tissue and retrogradely transported to the cell body, allowing for tissue-specific transduction.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adenoviridae / genetics*
  • Animals
  • Animals, Genetically Modified
  • Gene Silencing / physiology*
  • Genetic Vectors*
  • Green Fluorescent Proteins / metabolism
  • Guinea Pigs
  • Models, Animal
  • Neurons, Afferent / physiology*
  • Nodose Ganglion / cytology
  • Nodose Ganglion / metabolism
  • Patch-Clamp Techniques
  • TRPV Cation Channels / genetics
  • TRPV Cation Channels / metabolism*

Substances

  • TRPV Cation Channels
  • TRPV1 protein, mouse
  • Green Fluorescent Proteins