A new 18x18 cm(2) active area lanthanum hexaboride (LaB(6)) plasma source for use in a dc discharge has been developed at UCLA. The cathode consists of four tiled LaB(6) pieces indirectly heated to electron emission (1750 degrees C) by a graphite heater. A molybdenum mesh anode 33 cm in front of the LaB(6) accelerates the electrons, ionizing a fill gas to create a 20x20 cm(2) nearly square plasma. The source is run in pulsed operation with the anode biased up to +400 V dc with respect to the cathode for up to 100 ms at a 1 Hz repetition rate. Both the cathode and anode "float" electrically with respect to the chamber walls. The source is placed in a toroidal chamber 2 m wide and 3 m tall with a major radius of 5 m. Toroidal and vertical magnetic fields confine the current-free plasma which follows the field in a helix. The plasma starts on the bottom of the machine and spirals around it up to four times (120 m) and can be configured to terminate either on the top wall or on the neutral gas itself. The source typically operates with a discharge current up to 250 A in helium making plasmas with T(e)<30 eV, T(i)<16 eV, and n(e)<3x10(13) cm(-3) in a background field of 100 G<B(o)<320 G, giving a magnetized plasma with 0.1<beta<1.