Localization microscopy reveals expression-dependent parameters of chromatin nanostructure

Biophys J. 2010 Sep 8;99(5):1358-67. doi: 10.1016/j.bpj.2010.05.043.

Abstract

A combined approach of 2D high-resolution localization light microscopy and statistical methods is presented to infer structural features and density fluctuations at the nuclear nanoscale. Hallmarks of nuclear nanostructure are found on the scale below 100 nm for both human fibroblast and HeLa cells. Mechanical measures were extracted as a quantitative tool from the histone density fluctuations inside the cell to obtain structural fluctuations on the scale of several micrometers. Results show that different mechanisms of expression of the same nuclear protein type lead to significantly different patterns on the nanoscale and to pronounced differences in the detected compressibility of chromatin. The observed fluctuations, including the experimental evidence for dynamic looping, are consistent with a recently proposed chromatin model.

MeSH terms

  • Cell Nucleus / metabolism
  • Chromatin / chemistry*
  • Chromatin / metabolism*
  • Fluorescent Dyes / metabolism
  • Gene Expression Regulation*
  • HeLa Cells
  • Histones / chemistry
  • Histones / metabolism
  • Humans
  • Image Processing, Computer-Assisted
  • Light
  • Microscopy / methods*
  • Microscopy / statistics & numerical data
  • Nanostructures
  • Protein Transport

Substances

  • Chromatin
  • Fluorescent Dyes
  • Histones