Spatial perception is modulated by eye movements. During smooth pursuit, perceived locations are shifted in the direction of the eye movement. During active fixation, visual space is perceptually compressed towards the fovea. In our present study, we were interested to determine the time course of spatial localization during pursuit initiation, i.e. the transition period from fixation to steady-state pursuit. Human observers had to localize briefly flashed targets around the time of pursuit initiation. Our data clearly show that pursuit-like mislocalization starts well before the onset of the eye movement. Our results point towards corollary-discharge as neural source for the observed perceptual effect.
Copyright © 2010 Elsevier Ltd. All rights reserved.