A series of MnO(x)/TiO(2) composite nanoxides were prepared by deposition-precipitation (DP) method, and the sample with the Mn/Ti ratio of 0.3 showed a superior activity for NO catalytic oxidation to NO(2). The maximum NO conversion over MnO(x)(0.3)/TiO(2)(DP) could reach 89% at 250°C with a GHSV of 25,000h(-1), which was much higher than that over the catalyst prepared by conventional wet-impregnation (WI) method (69% at 330°C). Characterization results including XRD, HRTEM, FTIR, XPS, H(2)-TPR, NO-TPD and Nitrogen adsorption-desorption implied that the higher activity of MnO(x)(0.3)/TiO(2)(DP) could be attributed to the enrichment of well-dispersed MnO(x) on the surface and the abundance of Mn(3+) species. Furthermore, DRIFT investigations and long-time running test indicated that NO(2) came from the decomposition of adsorbed nitrogen-containing species.
Copyright © 2010 Elsevier Inc. All rights reserved.