Animal and human studies have shown that after allogeneic hematopoietic cell transplantation, epithelial cells containing donor-derived genome emerge. The mechanisms underlying this phenomenon are still unclear. We hypothesized that horizontal transfer of the hematopoietic donor-DNA to the host epithelium confers a possible operating mechanism. In an in vitro model mimicking the lymphocyte-epithelial interaction, we cocultivated keratinocyte HaCaT cells (Y-chromosome negative) with nonapoptotic or apoptotic, CMFDA, or BrdU-labeled hematopoietic Jurkat cells (Y+) and looked for the emergence of HaCaT cells bearing Jurkat genome. We found that DNA can be horizontally transferred from hematopoietic to epithelial cell lines through phagocytosis of apoptotic bodies. The ingested genomic material was also found within the nuclear compartment and in isolated chromosomes obtained from HaCaT metaphases. Both lysosomal inhibition in HaCaT cells and repetitive load of HaCaT cells with apoptotic bodies increased the intercellular and intranuclear DNA delivery. Although recipient cells remained viable and showed to express the foreign DNA, this expression was transient. Taking into consideration these findings of horizontal DNA transfer between hematopoietic and epithelial cells, we evaluated by quantitative microsatellite analysis the amount of donor DNA in 176 buccal swabs obtained from 71 patients after allogeneic transplantation. We found a high amount of donor-DNA (mean 26.6%) in the majority (89.7%) of them, although no donor hematopoietic cells were evident in the samples by immunofluorescence. We propose that the incessant charge of the transplant recipient with donor-DNA and its "inappropriate" intranuclear delivery in host epithelium may explain the emergence of epithelial cells with donor-derived genome.
Copyright © 2011 American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.