Objective: GX sPLA(2) potently hydrolyzes plasma membranes to generate lysophospholipids and free fatty acids; it has been implicated in inflammatory diseases, including atherosclerosis. To identify a novel role for group X (GX) secretory phospholipase A(2) (sPLA(2)) in modulating ATP binding casette transporter A1 (ABCA1) and ATP binding casette transporter G1 (ABCG1) expression and, therefore, macrophage cholesterol efflux.
Methods and results: The overexpression or exogenous addition of GX sPLA(2) significantly reduced ABCA1 and ABCG1 expression in J774 macrophage-like cells, whereas GX sPLA(2) deficiency in mouse peritoneal macrophages was associated with enhanced expression. Altered ABC transporter expression led to reduced cholesterol efflux in GX sPLA(2)-overexpressing J774 cells and increased efflux in GX sPLA(2)-deficient mouse peritoneal macrophages. Gene regulation was dependent on GX sPLA(2) catalytic activity, mimicked by arachidonic acid and abrogated when liver X receptor (LXR)α/β expression was suppressed, and partially reversed by the LXR agonist T0901317. Reporter assays indicated that GX sPLA(2) suppresses the ability of LXR to transactivate its promoters through a mechanism involving the C-terminal portion of LXR spanning the ligand-binding domain.
Conclusions: GX sPLA(2) modulates gene expression in macrophages by generating lipolytic products that suppress LXR activation. GX sPLA(2) may play a previously unrecognized role in atherosclerotic lipid accumulation by negatively regulating the genes critical for cellular cholesterol efflux.