Automatic learning sparse correspondences for initialising groupwise registration

Med Image Comput Comput Assist Interv. 2010;13(Pt 2):635-42. doi: 10.1007/978-3-642-15745-5_78.

Abstract

We seek to automatically establish dense correspondences across groups of images. Existing non-rigid registration methods usually involve local optimisation and thus require accurate initialisation. It is difficult to obtain such initialisation for images of complex structures, especially those with many self-similar parts. In this paper we show that satisfactory initialisation for such images can be found by a parts+geometry model. We use a population based optimisation strategy to select the best parts from a large pool of candidates. The best matches of the optimal model are used to initialise a groupwise registration algorithm, leading to dense, accurate results. We demonstrate the efficacy of the approach on two challenging datasets, and report on a detailed quantitative evaluation of its performance.

MeSH terms

  • Algorithms*
  • Artificial Intelligence*
  • Humans
  • Image Enhancement / methods
  • Image Interpretation, Computer-Assisted / methods*
  • Imaging, Three-Dimensional / methods*
  • Pattern Recognition, Automated / methods*
  • Reproducibility of Results
  • Sensitivity and Specificity
  • Subtraction Technique*