Effect of a temperature increase in the non-noxious range on proton-evoked ASIC and TRPV1 activity

Pflugers Arch. 2011 Jan;461(1):123-39. doi: 10.1007/s00424-010-0884-3. Epub 2010 Oct 6.

Abstract

Acid-sensing ion channels (ASICs) are neuronal H(+)-gated cation channels, and the transient receptor potential vanilloid 1 channel (TRPV1) is a multimodal cation channel activated by low pH, noxious heat, capsaicin, and voltage. ASICs and TRPV1 are present in sensory neurons. It has been shown that raising the temperature increases TRPV1 and decreases ASIC H(+)-gated current amplitudes. To understand the underlying mechanisms, we have analyzed ASIC and TRPV1 function in a recombinant expression system and in dorsal root ganglion (DRG) neurons at room and physiological temperature. We show that temperature in the range studied does not affect the pH dependence of ASIC and TRPV1 activation. A temperature increase induces, however, a small alkaline shift of the pH dependence of steady-state inactivation of ASIC1a, ASIC1b, and ASIC2a. The decrease in ASIC peak current amplitudes at higher temperatures is likely in part due to the observed accelerated open channel inactivation kinetics and for some ASIC types to the changed pH dependence of steady-state inactivation. The increase in H(+)-activated TRPV1 current at the higher temperature is at least in part due to a hyperpolarizing shift in its voltage dependence. The contribution of TRPV1 relative to ASICs to H(+)-gated currents in DRG neurons increases with higher temperature and acidity. Still, ASICs remain the principal pH sensors of DRG neurons at 35°C in the pH range ≥6.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Acid Sensing Ion Channels
  • Animals
  • CHO Cells
  • Cell Line
  • Cricetinae
  • Cricetulus
  • Ganglia, Spinal / physiology
  • Hydrogen-Ion Concentration
  • Ion Channel Gating
  • Kinetics
  • Male
  • Mice
  • Nerve Tissue Proteins / physiology*
  • Protons
  • Rats
  • Rats, Wistar
  • Sensory Receptor Cells
  • Sodium Channels / physiology*
  • TRPV Cation Channels / physiology*
  • Temperature

Substances

  • ASIC1 protein, mouse
  • Acid Sensing Ion Channels
  • Nerve Tissue Proteins
  • Protons
  • Sodium Channels
  • TRPV Cation Channels
  • Trpv1 protein, rat