Rationale: Trilostane is a competitive inhibitor of 3β-hydroxysteroid dehydrogenase (3β-HSD), which notably converts pregnenolone into progesterone or dehydroepiandrosterone into androstenedione. Trilostane shows antidepressant-like properties in the forced swimming test (FST). The compound, however, induced only moderate effects on neuroactive steroid levels that could be related to its behavioral efficacy.
Methods: We compared the behavioral effect of trilostane with the other 3β-HSD inhibitor, cyanoketone, and analyzed the putative involvement of the β-type estrogen receptor (ERβ) in its antidepressant effect.
Results: Trilostane reduced immobility in the FST significantly at 12.5 and 25 mg/kg subcutaneously (s.c.), whereas cyanoketone (0-100 mg/kg s.c.) was ineffective. The negative ER modulator fulvestrant (ICI 182780) dose-dependently blocked the effect of trilostane (25 mg/kg). Trilostane increased circulating estradiol levels in the 12.5-50 mg/kg dose-range, and this effect was unaffected by stress and not shared by cyanoketone (25 mg/kg). The trilostane (25 mg/kg) treatment increased the ERβ mRNA expression in adrenals (+100%) and centrally, in the hippocampus (+330%). Stress and cyanoketone failed to affect ERβ mRNA levels in periphery or in the brain.
Conclusions: These data demonstrate that the antidepressant-like potential of trilostane is not due to its 3β-HSD inhibiting activity, since it is not shared by cyanoketone, but rather to its estrogenic activity. The compound, which releases estradiol and up-regulates ERβ receptors, could be used as a therapeutic tool to allow an estrogenic facilitation of antidepressant efficacy.