A single serine point mutation (S374A) in the adenosine A(2A) receptor (A(2A)R) C-terminal tail reduces A(2A)R-D(2)R heteromerization and prevents its allosteric modulation of the dopamine D(2) receptor (D(2)R). By means of site directed mutagenesis of the A(2A)R and synthetic transmembrane (TM) α-helix peptides of the D(2)R we further explored the role of electrostatic interactions and TM helix interactions of the A(2A)R-D(2)R heteromer interface. We found evidence that the TM domains IV and V of the D(2)R play a major role in the A(2A)R-D(2)R heteromer interface since the incubation with peptides corresponding to these domains significantly reduced the ability of A(2A)R and D(2)R to heteromerize. In addition, the incubation with TM-IV or TM-V blocked the allosteric modulation normally found in A(2A)R-D(2)R heteromers. The mutation of two negatively charged aspartates in the A(2A)R C-terminal tail (D401A/D402A) in combination with the S374A mutation drastically reduced the physical A(2A)R-D(2)R interaction and lost the ability of antagonistic allosteric modulation over the A(2A)R-D(2)R interface, suggesting further evidence for the existence of an electrostatic interaction between the C-terminal tail of A(2A)R and the intracellular loop 3 (IL3) of D(2)R. On the other hand, molecular dynamic model and bioinformatic analysis propose that specific AAR, AQE, and VLS protriplets as an important motive in the A(2A)R-D(2L)R heteromer interface together with D(2L)R TM segments IV/V interacting with A(2A)R TM-IV/V or TM-I/VII.
Copyright © 2010 Elsevier Inc. All rights reserved.