Superior Z→E and E→Z photoswitching dynamics of dihydrodibenzodiazocine, a bridged azobenzene, by S1(nπ*) excitation at λ = 387 and 490 nm

Phys Chem Chem Phys. 2011 Jan 21;13(3):1054-63. doi: 10.1039/c0cp01148g. Epub 2010 Nov 12.

Abstract

The ultrafast Z→E and E→Z photoisomerisation dynamics of 5,6-dihydrodibenzo[c,g][1,2]diazocine (1), the parent compound of a class of bridged azobenzene-based photochromic molecular switches with a severely constrained eight-membered heterocyclic ring as central unit, have been studied by femtosecond time-resolved spectroscopy in n-hexane as solvent and by quantum chemical calculations. The diazocine contrasts with azobenzene (AB) in that its Z rather than E isomer is the energetically more stable form. Moreover, it stands out compared to AB for the spectrally well separated S(1)(nπ*) absorption bands of its two isomers. The Z isomer absorbs at around λ = 404 nm, the E form has its absorption maximum around λ = 490 nm. The observed transient spectra following S(1)(nπ*) photoexcitation show ultrafast excited-state decays with time constants τ(1) = 70 fs for the Z and <50 fs for the E isomer reflecting very fast departures of the excited wave packets from the S(1) Franck-Condon regions and τ(2) = 270 fs (320 fs) related to the Z→E (resp. E→Z) isomerisations. Slower transient absorption changes on the time scale of τ(3) = 5 ps are due to vibrational cooling of the reaction products. The results show that the unique steric constraints in the diazocine do not hinder, but accelerate the molecular isomerisation dynamics and increase the photoswitching efficiencies, contrary to chemical intuition. The observed isomerisation times and quantum yields are rationalised on the basis of CASPT2//CASSCF calculations by a S(1)/S(0) conical intersection seam at a CNNC dihedral angle of ≈96° involving twisting and torsion of the central CNNC moiety. With improved photochromism, high quantum yields, short reaction times and good photostability, diazocine 1 and its derivatives constitute outstanding candidates for photoswitchable molecular tweezers and other applications.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Azo Compounds / chemistry*
  • Azocines / chemistry*
  • Hexanes / chemistry
  • Isomerism
  • Molecular Dynamics Simulation
  • Photochemical Processes
  • Quantum Theory
  • Spectrophotometry, Ultraviolet

Substances

  • Azo Compounds
  • Azocines
  • Hexanes
  • n-hexane
  • azobenzene