Background: Previous studies indicate that the frequency distributions of HLA alleles and haplotypes vary from one ethnic group to another or between the members of the same ethnic group living in different geographic areas. It is necessary and meaningful to study the high-resolution allelic and haplotypic distributions of HLA loci in different groups.
Methodology/principal findings: High-resolution HLA typing for the Uyghur ethnic minority group using polymerase chain reaction-sequence-based-typing method was first reported. HLA-A, -B and -DRB1 allelic distributions were determined in 104 unrelated healthy Uyghur individuals and haplotypic frequencies and linkage disequilibrium parameters for HLA loci were estimated using the maximum-likelihood method. A total of 35 HLA-A, 51 HLA-B and 33 HLA-DRB1 alleles were identified at the four-digit level in the population. High frequency alleles were HLA-A*1101 (13.46%), A*0201 (12.50%), A*0301 (10.10%); HLA-B*5101(8.17%), B*3501(6.73%), B*5001 (6.25%); HLA-DRB1*0701 (16.35%), DRB1*1501 (8.65%) and DRB1*0301 (7.69%). The two-locus haplotypes at the highest frequency were HLA-A*3001-B*1302 (2.88%), A*2402-B*5101 (2.86%); HLA-B*5001-DRB1*0701 (4.14%) and B*0702-DRB1*1501 (3.37%). The three-locus haplotype at the highest frequency was HLA-A*3001-B*1302-DRB1*0701(2.40%). Significantly high linkage disequilibrium was observed in six two-locus haplotypes, with their corresponding relative linkage disequilibrium parameters equal to 1. Neighbor-joining phylogenetic tree between the Uyghur group and other previously reported populations was constructed on the basis of standard genetic distances among the populations calculated using the four-digit sequence-level allelic frequencies at HLA-A, HLA-B and HLA-DRB1 loci. The phylogenetic analyses reveal that the Uyghur group belongs to the northwestern Chinese populations and is most closely related to the Xibe group, and then to Kirgiz, Hui, Mongolian and Northern Han.
Conclusions/significance: The present findings could be useful to elucidate the genetic background of the population and to provide valuable data for HLA matching in clinical bone marrow transplantation, HLA-linked disease-association studies, population genetics, human identification and paternity tests in forensic sciences.