Background & aims: Heterogeneity in the hepatitis C virus (HCV) protein NS5A influences its sensitivity to interferon-based therapy. Furthermore, NS5A is an important target for development of HCV-specific inhibitors. We aimed to develop recombinant infectious cell culture systems that express NS5A from isolates of the 7 major HCV genotypes, and determining their sensitivity to a specific NS5A inhibitor and to interferon-α.
Methods: Huh7.5 hepatoma cells were transfected with RNA of genotype 1-7 NS5A recombinants. Viability was determined by measuring HCV replication and infectivity titers. Putative adaptive mutations were analyzed by reverse genetics. The activity of antiviral agents was determined in high-throughput infection assays.
Results: Cells infected with viable HCV that expressed NS5A of genotypes 1-7 produced relatively high viral titers; most NS5A recombinants required introduction of specific adaptive mutations. The efficacy of the NS5A inhibitor BMS-790052 varied greatly, based on NS5A isolate, with median effective concentration (EC(50)) values ranging from 0.009 nmol/L to 14 nmol/L; the high sensitivity of genotype 1b NS5A to BMS-790052 reflected observations from clinical studies. Specific residues in NS5A domain I were associated with >100-fold variations in sensitivity between isolates of the same HCV subtype. The Y/T2065H mutation conferred resistance to BMS-790052 that varied among NS5A isolates. When infected cultures were incubated with interferon-α, all NS5A recombinants had EC(50) values of ∼0.2 IU/mL, including an NS5A genotype 1b mutant with a putative sensitive-type, interferon sensitivity determining region.
Conclusions: We developed efficient in vitro systems in which recombinant viruses express HCV genotypes 1-7 NS5A; these permit genotype- and isolate-specific analyses of NS5A and the effects of antiviral compounds and resistance mutations. These culture systems will facilitate development of specific inhibitors against NS5A of different HCV variants.
Copyright © 2011 AGA Institute. Published by Elsevier Inc. All rights reserved.