Decellularized xenograft heart valves might be the ideal scaffolds for tissue engineered heart valves as the alternative to the currently used biological and mechanical prostheses. However, removal of the alpha-Gal epitope is a prerequisite to avoid hyperacute rejection of untreated xenograft material. The aim of this study was to develop an ELISA soft-tissue assay for alpha-Gal quantification in xenograft heart valves before and after a detergent-based (TriCol) or equivalent cell removal procedure. Leaflets from porcine valves were enzymatically digested to expose the epitope and reacted with the alpha-Gal monoclonal antibody M86 for its recognition. Rabbit erythrocytes were used as a reference for the quantification of alpha-Gal. Native aortic and pulmonary leaflets exhibited different epitope concentration: 4.33×10(11) vs. 7.12×10(11)/10 mg wet tissue (p<0.0001). Sampling of selected zones in native valves revealed a different alpha-Gal distribution within and among different leaflets. The pattern was consistent with immunofluorescence analysis and was unrelated to microvessel density distribution. After TriCol treatment alpha-Gal was no longer detectable in both pulmonary and aortic decellularized valves, confirming the ability of this method to remove both cells and alpha-Gal antigen. These results hold promise for a reliable quantitative evaluation of alpha-Gal in decellularized valves obtained from xenograft material for tissues engineering purposes. Additionally, this method is applicable to further evaluate currently used xenograft bioprostheses.
Copyright © 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.