Disassembly and reassembly of amyloid fibrils in water-ethanol mixtures

Biomacromolecules. 2011 Jan 10;12(1):187-93. doi: 10.1021/bm101119t. Epub 2010 Dec 10.

Abstract

This work presents the structural analysis of amyloid-like β-lactoglobulin fibrils incubated in ethanol-water mixtures after their formation in water. We observe for the first time the disassembly of semiflexible heat-denatured β-lactoglobulin fibrils and reassembly into highly flexible wormlike fibrils in ethanol-water solutions. Tapping mode atomic force microscopy is performed to follow structural changes. Our results show that in addition to their growth in length, there is a continuous nucleation process of new wormlike objects with time at the expense of the original β-lactoglobulin fibrils. The persistence length of wormlike fibrils (29.43 nm in the presence of 50% ethanol), indicative of their degree of flexibility, differs by 2 orders of magnitude from that of untreated β-lactoglobulin fibrils (2368.75 nm in pure water). Interestingly, wormlike fibrils do not exhibit a multiple strands nature like the pristine fibrils, as revealed by the lower maximum height and the lack of clear height periodicity along their contour length profile. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) demonstrates that the set of polypeptides obtained by ethanol degradation differs in some fractions from that present in pristine β-lactoglobulin fibrils. ATR-FTIR (attenuated total reflectance-Fourier transform infrared) spectroscopy also supports a different composition of the secondary structure of wormlike fibrils with a decreased amount of α-helix and increased random coils and turns content. These findings can contribute to deciphering the molecular mechanisms of protein aggregation into amyloid fibrils and their disassembly as well as enabling tailor-made production of protein fibrils.

MeSH terms

  • Amyloid / chemistry*
  • Electrophoresis, Polyacrylamide Gel / methods
  • Ethanol / chemistry*
  • Lactoglobulins / chemistry*
  • Spectroscopy, Fourier Transform Infrared / methods
  • Water / chemistry*

Substances

  • Amyloid
  • Lactoglobulins
  • Water
  • Ethanol