Neuronal LRP1 knockout in adult mice leads to impaired brain lipid metabolism and progressive, age-dependent synapse loss and neurodegeneration

J Neurosci. 2010 Dec 15;30(50):17068-78. doi: 10.1523/JNEUROSCI.4067-10.2010.

Abstract

The vast majority of Alzheimer's disease (AD) cases are late onset with progressive synapse loss and neurodegeneration. Although the amyloid hypothesis has generated great insights into the disease mechanism, several lines of evidence indicate that other risk factors might precondition the brain to amyloid toxicity. Here, we show that the deletion of a major lipoprotein receptor, low-density lipoprotein receptor-related protein 1 (LRP1), in forebrain neurons in mice leads to a global defect in brain lipid metabolism characterized by decreased brain levels of cholesterol, sulfatide, galactosylceramide, and triglyceride. These lipid deficits correlate with progressive, age-dependent dendritic spine degeneration, synapse loss, neuroinflammation, memory loss, and eventual neurodegeneration. We further show that the levels of glutamate receptor subunits NMDA receptor 1 and Glu receptor 1 are selectively reduced in LRP1 forebrain knock-out mice and in LRP1 knockdown neurons, which is partially rescued by restoring neuronal cholesterol. Together, these studies support a critical role for LRP1 in maintaining brain lipid homeostasis and associated synaptic and neuronal integrity, and provide important insights into the pathophysiological mechanisms in AD.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Age Factors
  • Amnesia / pathology
  • Animals
  • Cell Culture Techniques
  • Dendritic Spines / pathology
  • Hippocampus / metabolism
  • Lipid Metabolism / genetics*
  • Low Density Lipoprotein Receptor-Related Protein-1 / genetics*
  • Low Density Lipoprotein Receptor-Related Protein-1 / metabolism
  • Mice
  • Mice, Knockout
  • Nerve Degeneration / genetics
  • Nerve Degeneration / metabolism*
  • Nerve Degeneration / pathology
  • Neurons / metabolism
  • Neurons / pathology*
  • Prosencephalon / metabolism*
  • Prosencephalon / pathology
  • Receptors, AMPA / biosynthesis
  • Receptors, N-Methyl-D-Aspartate / biosynthesis
  • Synapses / metabolism
  • Synapses / pathology*

Substances

  • Low Density Lipoprotein Receptor-Related Protein-1
  • Receptors, AMPA
  • Receptors, N-Methyl-D-Aspartate