Imaging hydrated microbial extracellular polymers: comparative analysis by electron microscopy

Appl Environ Microbiol. 2011 Feb;77(4):1254-62. doi: 10.1128/AEM.02001-10. Epub 2010 Dec 17.

Abstract

Microbe-mineral and -metal interactions represent a major intersection between the biosphere and geosphere but require high-resolution imaging and analytical tools for investigation of microscale associations. Electron microscopy has been used extensively for geomicrobial investigations, and although used bona fide, the traditional methods of sample preparation do not preserve the native morphology of microbiological components, especially extracellular polymers. Herein, we present a direct comparative analysis of microbial interactions by conventional electron microscopy approaches with imaging at room temperature and a suite of cryogenic electron microscopy methods providing imaging in the close-to-natural hydrated state. In situ, we observed an irreversible transformation of the hydrated bacterial extracellular polymers during the traditional dehydration-based sample preparation that resulted in their collapse into filamentous structures. Dehydration-induced polymer collapse can lead to inaccurate spatial relationships and hence could subsequently affect conclusions regarding the nature of interactions between microbial extracellular polymers and their environment.

Publication types

  • Comparative Study
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Cryoelectron Microscopy / methods*
  • Dehydration
  • Metals / metabolism
  • Microbial Interactions
  • Microscopy, Electron / methods*
  • Minerals / metabolism
  • Polymers / metabolism*
  • Shewanella / chemistry*
  • Shewanella / physiology
  • Shewanella / ultrastructure*

Substances

  • Metals
  • Minerals
  • Polymers